QUT Medical and Healthcare Robotics Group
The use of arthroscopy, where a camera and cutting tool is inserted into a joint such as the knee, is now commonplace in the developed world. However, it is not yet widely available in the developing world due to a lack of specialised surgeons.
Problem: Currently, surgeons use their own vision to understand the operation before them and their own hands, and feet, to manipulate the camera and their tools. The procedure is difficult to master and takes a long time to learn.
Solution: Our interdisciplinary research team develops the techniques and technology to enable future robotic assistants that will work in tandem with a human surgeon in performing joint arthroscopy. In particular, the research is developing robotic vision systems that are capable of mapping joints in real-time via arthroscopically sourced video streams. Our research team also explores control schemes that allow robots to hold and manipulate both the arthroscope and the surgical tools using robotic vision in the control feedback loop (visual servoing).
The medical robotics researchers within QUT’s robotics and autonomous systems also have an interest in the use of vision-based machine learning techniques to lower the cost of diagnostic testing of blood and retinal images. The team is exploring the use of machine learning techniques while at the same time developing new cost-effective mobile phone-based image acquisition systems.
We welcome industry collaborations in this field. For more information about collaborating with our team, please contact us. Medical robotics is an application area within the Australian Centre for Robotic Vision (ACRV).